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Lecture 11: The Kalman Filter
Friday, October 14, 2022

Lecturer: Laurent Lessard Scribe: Xavier Hubbard

In this lecture we discuss how multiple noisy measurements can be combined to estimate the state
of a dynamical system. To this end we outline the development of the Kalman Filter from three
perspectives while exploring their trade-offs in design and performance. We first explore the Kalman
filter as a large estimation problem. We then view it as MAP optimization problem. And finally
we develop the Kalman Filter as a recursive problem.

1 Three views of the Kalman Filter

1.1 Problem Definition

The dynamics of the system will be defined as follows:

xt+1 = Axt + wt, wt ∼ N (0,Σw)

yt = Cxt + vt, vt ∼ N (0,Σv)

x0 ∼ N (µx,Σx)

where we define µx and Σx as the initial estimates for the mean and covariance of x. We want
to develop a way to calculate the expectation and covariance of x at some time t, given a set of
observations occurring prior to a time s, such that s is before t. We write this

x̂t|s = E(xt | y0, y1, . . . , ys)
Σt|s = Cov(xt | y0, y1, . . . , ys)

1.2 Large Scale Estimation

We can develop the formulation of the Kalman Filter as a solution to a large scale estimation
problems. To see this, let’s write a few iterations of the state equations:

x1 = Ax0 + w0

x2 = A2x0 +Aw0 + w1

x3 = A3x0 +A2w0 +Aw1 + w2

...

xt = Atx0 +At−1w0 + · · ·+ wt−1.
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We can capture this problem as a matrix equation:
x0
x1
x2
...
xt


︸ ︷︷ ︸

x̄

=


I 0 0 · · · 0
A I 0 · · · 0
A2 A I · · · 0
...

...
. . .

. . .
...

At At−1 · · · A I


︸ ︷︷ ︸

Ā


x0
w0

w1

...
wt−1


︸ ︷︷ ︸

w̄

which we will write as
x̄ = Āw̄ (1)

Now let’s calculate the measurement equations:

y0 = Cx0 + v0

y1 = CAx0 + Cw0 + v1

y2 = CA2x0 + CAw0 + Cw1 + v2

...

xt = CAtx0 + CAt−1w0 + · · ·+ Cwt−1 + vt

We can also capture this problem as a matrix equation:
y0
y1
y2
...
yt


︸ ︷︷ ︸

ȳ

=


C 0 0 · · · 0
CA C 0 · · · 0
CA2 CA C · · · 0
...

. . .
. . .

...
CAt CAt−1 · · · CA C


︸ ︷︷ ︸

H̄


x0
w0

w1

...
wt−1


︸ ︷︷ ︸

w̄

+


v0
v1
v2
...
vt


︸ ︷︷ ︸

v̄

which we will write
ȳ = H̄w̄ + v̄. (2)

Since we know w and v are Gaussian we can write:

w̄ ∼ N



µx

0
...
0

 ,


Σx

Σw

. . .

Σw


 = N (e1µx,W ) (3a)

and v̄ ∼ N


0...
0

 ,

Σv

. . .

Σv


 = N (0, V ) (3b)

This also works in the case where Σw or Σv varies over time. There, you would have the appropriate
Σwt and Σvt on the block diagonals of the W and V matrices.
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Combining (1) and (2) and (3), we obtain:[
x̄
ȳ

]
=

[
Ā 0
H̄ I

] [
w̄
v̄

]
and

[
w̄
v̄

]
∼ N

([
e1µx

0

]
,

[
W 0
0 V

])
. (4)

This is a linear transformation of Gaussian random variables, which takes the form:[
x̄
ȳ

]
∼ N

([
Āe1µx

H̄e1µx

]
,

[
ĀWĀT ĀWH̄T

H̄WĀT H̄WH̄T + V

])
. (5)

Now recall that we already know how to find the conditional of a joint Gaussian distribution:[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
=⇒ (x | y) ∼ N

(
µx +ΣxyΣ

−1
y (y − µy),Σx − ΣxyΣ

−1
y Σyx

)
.

Which means we can find the final expected value E(x̄ | ȳ) as:

E(x̄ | ȳ) = Āe1µx + ĀWH̄T(H̄WH̄T + V )−1(ȳ − H̄e1µx). (6)

One of the interesting things about this problem is that the solution E(x̄ | ȳ) has the form:

E(x̄ | ȳ) =


x̂0|t
x̂1|t
x̂2|t
...

x̂t|t

 .

This means that this procedure solves for the entire optimal history of the state even if the user is
only interested in the most recent estimates. This is the main drawback of this method; computation
and storage complexity scale as the time horizon grows.

1.3 MAP Problem

It is also possible to view the formulation of the Kalman Filter through the lens of Maximum A
Posteriori (MAP) estimation. The problem takes the form:

min
x̄

[
x̄− Āe1µx

ȳ − H̄e1µx

]T [
ĀWĀT ĀWH̄T

H̄WĀT H̄WH̄T + V

]−1 [
x̄− Āe1µx

ȳ − H̄e1µx

]
. (7)

The matrix inverse in the middle poses a bit of a problem, but we remember that we can decompose
it into the following:[

ĀWĀT ĀWH̄T

H̄WĀT H̄WH̄T + V

]−1

=

[[
Ā 0
H̄ I

] [
W 0
0 V

] [
ĀT H̄
0 I

]]−1

=

[
ĀT H̄
0 I

]−1 [
W−1 0
0 V −1

] [
Ā 0
H̄ I

]−1
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We can solve for the inverse quite simply:[
Ā 0
H̄ I

]−1

=

[
Ā−1 0

−H̄Ā−1 I

]
.

This runs into a new matrix inverse. Fortunately, Ā−1 has a form that is very easy to invert. Take
for example a 4-dimensional version of Ā:

Ā4 =


I 0 0 0
A I 0 0
A2 A I 0
A3 A2 A I




I 0 0 0
−A I 0 0
0 −A I 0
0 0 −A I

 =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


Next what is −H̄Ā−1? If C̄ = diag(C, . . . , C), we have

H̄ = C̄Ā =⇒ −H̄Ā−1 = −C̄.

And so we are able to find a whole solution. Plugging things back in, Eq. (7) becomes:

min
x̄

[
x̄− Āe1µx

ȳ − H̄e1µx

]T [
Ā−T −C̄T

0 I

] [
W−1 0
0 V −1

] [
Ā−1 0
−C̄ I

] [
x̄− Āe1µx

ȳ − H̄e1µx

]
.

= min
x̄

[
Ā−1x̄− e1µx

ȳ − C̄x̄

]T [
W−1 0
0 V −1

] [
Ā−1x̄− e1µx

ȳ − C̄x̄

]
. (8)

Here we can simplify further by noticing Ā−1x̄:

Ā−1x̄ =


I

−A I
−A I

. . .
. . .

−A I


x0x1

...

 =


x0

x1 −Ax0
x2 −Ax1

...

 =


x0
w0

w1

...

 .

Plugging this simplification back into (8) we get:

min
x̄

 x0 − µx

x1 −Ax0
...


T

W−1

 x0 − µx

x1 −Ax0
...

+

y0 − Cx0
y1 − Cx1

...


T

V −1

y0 − Cx0
y1 − Cx1

...


Which can be simplified to the maximization problem:

min
x̄

(
∥x0 − µx∥2Σ−1

x
+
∑
t

∥xt+1 −Axt∥2Σ−1
w

+
∑
t

∥yt − Cxt∥2Σ−1
v

)
(9)

We see here an optimization problem with a trade-off. We can think of this has finding the estimates
of x such that wt and vt are small. The relative sizes of the variances Σx, Σw, Σv determine which
terms have a larger weight/importance in the optimization. The glaring issue with this methodology
is that the addition of any new information is difficult to deal with due to all the terms being
coupled. In other words, we would need to re-solve the entire optimization problem every time new
information is included. We will next seek a recursive implementation of the solution.
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1.4 The Recursive Kalman Filter

The Kalman Filter can be broken into two steps: the measurement update and the time update.
They can be thought of in the following way:[

x̂t|t−1

Σt|t−1

]
yt−−−−−−−−−−−−−→

measurement update

[
x̂t|t
Σt|t

]
−−−−−−−→
time update

[
x̂t+1|t
Σt+1|t

]

1.4.1 Time Update

For the time update, we wish to see how the state of the system evolves as time progresses given
our current model for the state. Let’s review our state equations:

xt ∼ N (x̂t|t,Σt|t)

xt+1 = Axt + wt.

We can rewrite this as:

xt+1 =
[
A I

] [xt
wt

]
∼ N

([
A I

] [x̂t|t
0

]
,
[
A I

] [Σt|t 0

0 Σw

] [
AT

I

])
(10a)

xt+1 ∼ N
(
Ax̂t|t, AΣt|tA

T +Σw

)
(10b)

This tells us that xt+1 is Gaussian as described above. The simple form of this equation is as a
result of the assumption that wt and vt are uncorrelated. If they are correlated, then extra care has
to be taken when formulating the solution, since wt will not be independent of yt.

1.4.2 Measurement Update

For the measurement update, we wish to describe how the model for the state changes as a result
of an observation. This can be described as follows:[

x̂t|t−1

yt|t−1

]
=

[
I 0
C I

] [
x̂t|t−1

vt

]
(11)

where xt|t−1 ∼ N (x̂t|t−1,Σt|t−1) and vt ∼ N (0,Σv). This lets us write the entire system as a
Gaussian: [

xt|t−1

yt|t−1

]
∼ N

([
x̂t|t−1

Cx̂t|t−1

]
,

[
Σt|t−1 Σt|t−1C

T

CΣt|t−1 CΣt|t−1C
T

]
+Σv

)
. (12)

Knowing the conditional form of a Gaussian we can write:

xt|t−1|yt|t−1 = xt|t ∼ N
(
x̂t|t,Σt|t

)
(13)

where

x̂t|t = x̂t|t−1 +Σt|t−1C
T(CΣ− t|t− 1CT +Σv)

−1(yt − Cx̂t|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
T(CΣt|t−1C

T +Σv)
−1CΣt|t−1.
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We can simplify the notation a bit with the following:

x̂t := x̂t|t−1

Σt := Σt|t−1

giving us the final form of the state and covariance update:

x̂t+1 = Ax̂t +AΣtC
T(CΣtC

T +Σv)
−1(yt − Cx̂t) (14)

Σt+1 = AΣtA
T +Σw −AΣt|t−1C

T(CΣt|t−1C
T +Σv)

−1CΣtA
T (15)

Note that (15) has no dependence on y meaning the error covariance can be determined ahead of
time, before any measurements have been observed. We can simplify our notation one step further
by defining the Kalman Gain, Lt:

Lt := −AΣtC
T(CΣtC

T +Σv)
−1. (16)

We can at last define our full Kalman Filter update in its simplified form:

x̂t+1 = (A+ LtC)x̂t − Ltyt (17a)

Σt+1 = (A+ LtC)ΣtA
T +Σw (17b)

where we initialize the filter using the prior distribution on x: x̂0 = µx and Σ0 = Σx.

1.4.3 Error Dynamics

Lastly we will discuss how the error of our system changes. we define our error as follows:

et = xt − x̂t =⇒ Cov(et) = Σt

This leads to the error dynamics

et+1 = (A+ LtC)et + (wt + Ltvt)

These error dynamics reveal that the error does not depend explicitly on the measurements yt. We
can take the covariance of both sides and we obtain

Σt+1 = (A+ LtC)Σt(A+ LtC)T + (Σw + LtΣvL
T
t )

which is actually the same (after some algebra) as Eq. (17b).
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2 Spring-mass-damper example

As a simple example, consider the spring-mass-damper system shown in Fig. 1. This example was
borrowed from Engr207b lecture notes on the Kalman filter1 by Sanjay Lall.

Figure 1: Spring-mass-damper system

We chose ki = 2, bi = 0.1, mi = 1. The system has six states (positions and velocities of the three
masses). We have noisy measurements of masses 1 and 2, and our task is to estimate the position
of mass 3. Here are the equations describing the dynamics of the system

ẋ(t) = Ax(t) +Bw(t)

y(t) = Cx(t) + v(t)

Where A,B,C are given by:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−4 2 0 −0.2 0.1 0
2 −4 2 0.1 −0.2 0.1
0 2 −2 0 0.1 −0.1

 , B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

The first three equations state that the derivative of position is equal to velocity, and this is an
exact relationship (so there is no process noise). The last three equations describe force balance on
the three masses, and here the process noise enters in as a force disturbance on the masses. We
discretized these equations using a timestep of h = 0.1 to obtain equations of the form:

xt+1 = Adxt +Bdwt

yt = Cdxt + vt

The details of the discretization are not important. You can look at the posted code for more details
if you’re interested. We used wt ∼ N (0, σ2

wI) and vt ∼ N (0, σ2
v) with σw = 0.2 and σv = 0.1.

In Fig. 2, we simulate one particular realization of a trajectory of the system, and we plot the
confidence interval using no measurements (just using the time update x̂t+1 = Adx̂t and Σt+1 =
AdΣtA

T
d +W ), and we also plot the confidence interval using the Kalman filter.

The no-measurement confidence interval will be the same no matter what the noise realization
looks like. Of course, the KF provides a tighter confidence interval since it is measurement- and
therefore realization-dependent. In the bottom panel of Fig. 2, we see what happens when we
make the measurement noise very large. Here, the KF estimate is not much better than using no
measurements at all.

1http://engr207b.stanford.edu/lectures/kalman_filter_2011_02_22_01.pdf
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Figure 2: Simulation of spring-mass-damper system from Fig. 1 using ki = 2, mi = 1,
bi = 0.1. We discretized using a timestep of 0.1. Process noise has standard deviation
σw = 0.2. We used measurement noise with σv = 0.1 (top panel) and σv = 100
(bottom panel). When there is high measurement noise, the KF estimate tends to the
no-measurement estimate.
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